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ABSTRACT

Current methods of tracking the human body within virtual environments (VE) are
hampered by problems due to interference which occurs from using artificialy generated
source signals. In recent years, the miniaturization of self-contained inertial tracking
systems has made them a viable alternative. They are impervious to external interference
but requirefiltering in order to give accurate orientation data. Filtersfor thispurpose using
Euler anglesare common, but arelimited by their inability to track through the vertical axis.
A filter based on quaternions would not have this limitation.

This thesis presents an implementation of a quaternion filter in Lisp. The filter was
tested with a computer ssmulated inertial tracker. Also presented is a quantitative and
gualitative assessment of an existing inertial tracker, Angularis, which uses a filter based
on Euler angles.

This effort resulted in an improved filter based on quaternions which allows objects
to be tracked through the vertical axis making it amore desirable option for body tracking
applications. Theevaluation of the Angularisinertial tracker yielded generally good results
when tested on a tilt-table at various rates of motion through 45 degrees of rotation.
Specifically, orientation errors measured were typically less than one degree for smooth
motion. However, when moved rapidly through large orientation angles, it was found that

the nonlinear characteristic of the proprietary filter resulted in large steady state errors.
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. INTRODUCTION

A. MOTIVATION

Computer systems have experienced a dramatic increase in performance and power in
a relatively short period of time. This increased performance makes more realistic and
immersive computer simulations possible for research, training and entertainment
purposes. However, as rapidly as computer systems have increased in capability, one
specific areaof computer simulations lags behind. Research into more realistic and natural
interactive input devices has come along very slowly and has not had the same success as
other aspects of computer hardware. The need for intuitive interaction in virtual
environments (VE) has driven the development of several different approaches to
accomplishing total immersion into synthetic worlds. The main thrust of research in this
realm has been in the area of producing new and improved sensors for tracking the human
form and other objects effectively and efficiently and with aslittle hindrance to the user as
possible.

In recent years, inertial sensing technology has become aviable alternative to systems
based upon mechanical, electromagnetic, acoustic, and optical tracking sensors. Inertial
trackers solve the problems encountered when using these systems, namely, shadowing,
metallic, electronic and acoustic interference as well as limitations in range. The self-
contained inertial sensors areimperviousto any outside interference and function solely by
sensing the earth’s magnetic and gravitational fields. A combination of accelerometers,
angular rate sensors, and magnetometers provide the system with the data required to

accurately specify spatial orientations. However, inherent limitations and errors associated



with accelerometers and angular rate sensors necessitates proper filtering be applied in

order to extract reliable orientation information.

B. GOALS

A quaternion attitude filter has been proposed which overcomes the singularities
encountered when using Euler angles to represent object orientations [MCGH96A]. The
goal of this thesis is to implement a simulation of an inertial system that will provide a
useful and decisive demonstration of thefilter’ s applicability to body tracking applications.
Allegro Common Lisp, ver. 3.0.1 for Windows was chosen as the programming language
with which to implement the simulation.

This thesis also takes an existing inertial sensor, the Angularis system, built by
InterSense, Inc., [INTE97], and presents a quantitative and qualitative analysis of its
performance. Even though this particular sensor was built specifically for the tracking of
the human head using a head mounted display (HMD), it isthe goal of this study to test the
applicability of this particular sensor to other types of tracking. Specifically, to determine
the viability of using such a sensor in human limb segment tracking applications. The
sensor is evaluated against asystem that is very well known and understood by researchers
at the Naval Postgraduate School (NPS), the Shallow-Water AUV Navigation System
(SANS) which is currently being used in the ongoing Autonomous Underwater Vehicle
(AUV) research [BACH96A, MCGH95, MCGH96B]. It is hoped that the Angularis
system can perform aswell as or better than the much larger SANS system. Thisadvanced,
miniaturized inertial sensing technology, used in conjunction with the quaternion filter

presented in this thesis, may allow for the creation of a full body suit which would be



capable of tracking an entire human body within VE applications much more reliably and

accurately than current systems.

C. ORGANIZATION

Chapter 11 of thisthesis surveys existing sensor technology and presents current work
in the area of human body tracking. Chapter 1l presents a detailed mathematical
formulation of aquaternion filter. The quaternion filter is presented as an alternative to the
use of Euler angles in representing object orientations. The quaternion representation
avoids singularities experienced when tracking objects through the vertical axis as happens
when using the more familiar Euler angles. Chapter |V elaborates on the use of the
guaternion filter by presenting a simulation model, created as part of this research, to show
the viability of using such afilter in conjunction with inertial sensorsfor object trackingin
VE's. Chapter V presents the results of quantitative and qualitative evaluations of the
Angularisinertial tracker. Comparisons are made between the Angularis tracker and the
SANS system, currently being researched in the NPS AUV project. Chapter VI, the last
chapter, presents conclusions about the results of this research and some recommendations

for possible future work with quaternion filters and inertial trackers.






II. BACKGROUND

High-performance computer graphics are being applied to an expanding range of
domains [BADL93]. One of the most dramatic and exciting areas is the real-time,
interactive representation of the human form in training, research and entertainment
applications. Several requirements must be met in order to effectively create a realistic
representation, namely: 1) create a human model with the desired level of detail, 2) define
thelevel of control and user inputs for manipulating the model, and 3) provide inputsto the
model in a timely fashion in order to achieve real-time performance [SKOP96]. Task
number two, user input methods, is the focus of thisthesis.

The primary purpose of any tracking device isto provide an intuitive interface between
human and machine in order to achieve the desired illusion of total immersion. The user
must be allowed to interact with the VE in afamiliar and natural way. Therefore, the use
of standard 2D pointing devices is unacceptable if the goal is to achieve redlistic
interaction. To that end, a few different types of trackers have been introduced which
employ varying methods to capture the position and orientation data of a tracked object
[FREY 96A]. Theremainder of this chapter presentsfour specific typesof trackersaswell

as quantitative measures by which they can be compared and evaluated.

A. MEASURING MOTION TRACKER PERFORMANCE
Although several different sensor tracking technologies have been developed and
applied to VE applications, there exists no standard evaluation method by which to obtain

quantifiable comparisons between different types of trackers [SKOP96]. Typically,



financial constraints and the intended application will dictate which tracker is most
appropriate for agiven project. [MEY E92] suggests some key measures by which tracking
systems may be evaluated, namely, (1) resolution and accuracy, (2) responsiveness, (3)
robustness, (4) registration, and (5) sociability. Resolution can be defined as the smallest
change which can be detected by a given tracking system. The level of detail required by
the application will define the resolution required. Higher resolutions are necessary for
applications which necessitate the tracking of small, precise movements. Accuracy isthe
sensor’s error range. Given some orientation or position information, the accuracy will
determine the range for which the raw datais correct. For example, inertial systems use
angular rate sensors which tend to drift over time due to inherent bias errors. The bias
determines the accuracy of the sensor and must be accounted for by filtering techniques. A
system’ s sampling rate, data rate, update rate, and lag (or latency) all combine to describe
the overall responsiveness. Sampling rate is simply how often the sensor is checked for
new data. The rate at which new data becomes available is the system’s datarate. Data
rate is defined as the number of computed data points per second that the system can
provide. Most systemswill implement amuch higher sampling rate than datarate in order
to assure that new data is not missed. The rate at which the system can provide updated
position and orientation data to the host computer is the update rate. Thisdataisraw data
and contains errors. Thus, the information must be filtered before it can be used with any
degree of reliability. Even then, the accuracy of the position and orientation updatesisonly
as good as the filter. Filtering the sensor data also takes time and will hinder real time

updates. A system’s lag is sometimes referred to as its latency and is perhaps one of the



most important specifications of a tracking system. Latency is the measure of the delay
between the movement of a tracked object and the corresponding movement of the
computer representation of that object in the VE. High latency in a tracking system is
undesirable. When sufficiently large, it produces visually disturbing anomalies in the
computer smulation. These anomaliestend to disorient and confuse participants, possibly
even inducing nausea and vomiting [FOXL94]. Robustness is the measure of a system’s
susceptibility to noise and other interference from outside sources. Types of interference
include shadowing, metallic, electronic and acoustic. Registration is defined as the
coherence between the sensor’s actual position and orientation and reported position and
orientation. Finally, sociability describes a system’s maximum range of operation, its
working volume, and the ability to track multiple targets within that operating range.
Working volume is that volume in which the tracker can accurately report position and/or
orientation information. [MEY E92]

These measures provide a means by which researchers and developers can
guantitatively determine the best technological alternative for a given application.
However, factors such as availability, cost, and ease of use must also be taken into

consideration before making afinal decision [SKOP96].

B. TYPESOF MOTION TRACKERS

1. M echanical

There are generaly two different types of mechanical trackers, body-based and

ground-based [FREY96B]. Body-based (exo-skeletal) systems are characterized by



interconnected mechanica linkages mounted on the user’s body which measure joint
angles directly. An example is shown in Figure 1. Since no external source is required,
these sensors are not susceptible to external interference and are very accurate. The
physical linkages are well suited for providing haptic responses. Haptic responses are
force feedback cues that enable the user to experience simulated exertion forces during a
VE simulation, further enhancing the realism of the environment and immersion of the

user.

Figure 1: IPORT Soldier Station [NRG97].

The same characteristics, however, that make mechanical tracking devices good for
haptic feedback also make such systems cumbersome, heavy, and not very comfortable to
use for extended periods of time [FREY 96A]. Also, the manner in which the harness is
attached to the body must be considered carefully. In order to obtain reliable joint angle

data, relative motion between the physical linkages and the human body must be



eliminated. The joints of the device have to remain aligned with the joints of the human
user in order to ensure the co-location of their respective centers of rotation [FREY 96B].
Ground-based systems are normally not attached to the user. Rather, they track the
position and orientation of a separate implement which is manipulated by the user
[FREY96B]. These systems, like their body-based counterparts, are very accurate and do
not suffer from externa interference. However, their applicability is limited by their
restrictive working volume. These devices are usualy not portable and require a

designated areafor their use (Figure 2).

Figure 2: Graphics Force Feedback System [HANC96].

In general, mechanical trackers are very precise and responsive to user inputs and are
not hindered by external interference. Applicationsrequiring alimited range of motion and

where user immobility is not a problem are best suited for this type of sensor. [MEY E92]



2. Electromagnetic

Electromagnetic trackers utilize artificially-generated electromagnetic fields to track
position and orientation. A fixed transmitter generates three orthogonal electromagnetic
fields which induce voltages in three orthogonal coils located in each detector attached to
the tracked object [FREY 96B]. Theseinduced voltagesarerelated to the spatial orientation
of the detector relative to the transmitter [FREY96B]. This type of system is typically
referred to as a sourced system with the source being the transmitter which generates the
reference electromagnetic fields.  Currently, there are two implementations of
electromagnetic trackers available, aternating current (ac) and direct current (dc)
[MEYE92].

The two implementations work in the same manner except for the way that the
reference magnetic field is emitted. The source in an ac system emits continuously
changing magnetic fields producing circulating (eddy) currents which in turn produce
secondary ac magnetic fields that distort the emitter field pattern [MEYE92]. The dc
implementation, on the other hand, emits a sequence of pulses which reduce the effect of
distorting currents [MEY E92]. Since eddy currents are created only when the magnetic
field is changing, dc systems only generate distortions at the beginning of a measurement
cycle [MEYE92]. When the field reaches its steady state, no eddy currents are created,
reducing overall system distortion [MEY E92].

Electromagnetic tracking devices are relatively inexpensive and can be used to track
numerous objects position and orientation with accuracies adequate for some applications

[FREY96B, SKOP96]. The disadvantage, however, is that they have a limited working
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volume dueto the fact that they are sourced and the magnetic field strength diminisheswith

distance [MEY E92, SKOP96, POLH93].

3. Acoustic

High frequency ultrasonic sound waves are used to track objects by either the
triangulation of severa receivers (time-of-flight method, TOF) or by measuring asignal’s
phase difference between transmitter and receiver (phase-coherence method, PC)
[FREY 96B, LIPM90]. The TOF method usesthe calculated speed of sound through the air
to determine the distance between several transmitters and one receiver or vice-versa
[SKOP96]. Triangulation formulae are then used, with the calculated distances, to
determine object position [LIPM90]. Tracking can be extended to 6-DOF by placing
sensors at three separate locations on the same object. Systems utilizing the PC method
measure the phase difference between transmitted and received signals and determine the
corresponding change in position. However, when an object moves farther than one-half
wavelength in a single update period, tracking errors will occur in the position calculation
[SKOP96]. Consequently, over time, small errors in position determination will result in
large errors overall [FREY 96B].

Acoustic systems based on TOF are susceptible to ranging errors due to reduced data
rates at greater operating distances. TOF systems are a'so more vulnerable to spurious
noise sources at any range. PC systems are less vulnerable to noise and in generd
experience improved accuracy, responsiveness, range, and robustness because of their

higher data rates, but PC systems are prone to cumulative errors over time. Both systems
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must maintain line-of-sight between transmitters and receivers in order to avoid position

data errors which result from sensor occlusion (shadowing). [MEY E92]

4. Inertial

Inertial tracking systems use a combination of linear acceleration, angular rate and
magnetometer sensors to determine rigid body orientation. Typically, angular orientation
is determined by integrating the output from the angular rate sensors [FREY96A]. Thisis
analogous to integrating linear velocity to find position. However, angular rate sensor
output isdegenerated by an error called drift. Drift isdefined asthe tendency of biaserrors,
inherent to the sensor, to cause increasing orientation measurement errors over time
[FREY96B]. The amount of drift error present in an angular rate sensors output is
dependent upon the quality of the sensor, with higher quality sensors having lower bias
errors [FREY96B]. This fundamental limitation makes angular rate sensors a short term
solution to determining arigid body’ s spatial orientation.

In order to compensate for the long term errors introduced by the use of angular rate
sensors, inertial systems utilize linear acceleration sensors called accelerometers.
Accelerometers measure the gravity vector, in reference to the local coordinate system, as
well asforced linear accelerations of the attached rigid body. This confounding of gravity

measurement is sometimes referred to as slosh [FOXL94]. Therefore, if the forced

acceleration is &, and the acceleration due to gravity is @ , then the accel eration measured

by the accelerometer is dmeasured = 3—@ [FOXL94]. Since most real objects do not

continuously accelerate, the average of the forced linear accel eration vector will eventually

12



become zero [FREY96B]. As the average of the forced acceleration vector approaches

%
zero, the averaged accelerometer output will therefore approach dmeasured = —g

When averaged over the long term, the accelerometer will produce the gravity vector,
expressed in body coordinates, which in turn can be used to calculate the rigid body’ s pitch
and roll anglesrelative to earth-coordinates [FREY 96B]. This observation justifiesthe use
of a complementary filter [BROW92] which incorporates the short term accuracy of the
angular rate sensors with the long term stability of the accelerometers to provide accurate
orientation information for atracked object.

The third component of inertial systems is the magnetometer. The magnetometer is
sensitive to the earth’s magnetic field and can sense rotations about the local vertical axis
[FREY96B]. Since accelerometers cannot detect rotations about the local vertical,
magnetometers must be used to correct drift errors in the azimuth cal cul ations made from
angular rate sensor data. Thus, acareful combination of the datafrom all three sensors can
provide a good representation of spatial orientation. A summary of al the sensors

presented isgiven in Table 1.

M echanical Magnetic Acoustic Inertial
Accuracy Good. Good in small work- Good. Good.
and ing volumes. Accu-
Resolution racy tendsto diminish

as emitter-sensor dis-
tance increases. Accu-
racy adversely
affected by ferromag-
netic objects in work-
ing volume.

Table 1. Evaluation of Position-Tracking Technologies[MEY E92, SKOP96].
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M echanical Magnetic Acoustic Inertial

Responsive- | Good. Relatively low data TOF: Good at close Good.

ness rates. Filteringrequired | range. Datarates

for distortionsin emit- | diminish asrange

ted field can introduce | increases.

lag. PC: Unaffected by
range.

Robustness Good. Not Ferromagnetic objects | TOF: Low datarates Excellent.
sensitive to create eddy currents cause vulnerability to
errorsintro- that distort the emitted | ranging errors.
duced from field causing ranging Robustness dimin-
the environ- errors. ishes as range
ment. increases and data

rates drop.

PC: High datarates
unaffected by range.
Excellent robustness.

Registration | No reports. No reports. No reports. Good.

Sociability Limited Most effective for TOF: Accuracy and Excellent.
range. Two small working vol- responsiveness dimin-
systems can- umes. Distortions ish asrange
not effectively | frominduced eddy cur- | increases. Small effec-
occupy the rents increase with tive working volume
sameworking | field strength. can limit sociability.
volume. Configurations avail- PC: Large working

able for allowing sen- volume offers good

sors to share emitters sociability. Increased

or for multiple emitters | range does not affect

in same work space. responsiveness.
Acoustic systems are
vulnerable to occlu-
sion.

Comments Cumbersome. | Available off-the- Acoustic systemsare | Expensive and not
Well suitedto | shelf. Relatively inex- starting to appear in widely available.
force feed- pensive. Most com- marketplace and are
back. monly used in current relatively inexpensive.

VR research.

Table 1: Evaluation of Position-Tracking Technologies[MEY E92, SKOP96].
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C. RELATED WORK

1. Responsive Workbench ™

The Responsive Workbench™ goal is to seamlessly integrate the computer into the
user’sworld [GMD97]. This approach is contrary to the typical VE where the goal is to
immerse the user into the computer’ s world and provide him/her with avirtual presencein
that world. With the approach taken by the creators of this system, it is possible for
everyday objects and activitiesto become inputs and outputsto the environment [GMD97].
The display, for instance, is not presented on atraditional computer monitor or television
screen but on areal 3D workbench (Figure 3). By doing this, the display becomes part of
the human’s working environment [GMD97]. Computer-generated stereoscopic images
are projected onto a tabletop via a projector-and-mirrors system as illustrated in Figure 4.
The 3D effect is observed by wearing shutter glasses. Although currently only one user is
tracked, the system allows other participants to observe the 3D interaction with their own
shutter glasses. The system also uses a 6-DOF tracking system to track the user's head as
well astracking the user’ s hands and an input stylusfor environment interaction [GMD97].

The creators of the Responsive Workbench™ refer to their system as a "Responsive
Environment”, which integrates tracking systems, cameras, projectors and microphones,
creating a more realistic training and learning environment and challenging traditional
expectations of what a computer workstation should be[GMD97]. Current applications of
this technology include: medical training, surgical planning, fluid dynamics visualization
in a virtual windtunnel, 3D architectural designs, molecular modeling and 3D

mani pulations of molecular models [GMD97].

15



Figure 3: Virtual, Stereoscopic Displayed Skeleton [GM D97].

Figure4: Projector-Mirror System [GM D97].
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2. Computer Graphics System with For ce Feedback

A more traditional effort, using mechanical sensors, is shown in Figure 2 [HANC96].
This system incorporates both stereoscopic viewing and direct object interaction with a
force feedback 1/0 handheld device [HANC96]. The system allows the user to not only
interact with virtual objects within the VE, but to also “feel” them. [HANC96] does not
refer to his system as“Virtual Reality” but instead as “Interactive Graphics’. He believes
that bimodal displays are the next step in computer graphics and that these systems are not
just for virtual reality games, but a serious tool that developers and researchers can utilize
in their work.

This system was implemented using two HP 735 UNIX workstations, a Phantom force
feedback device, and Crystal Eyes for stereoscopic viewing of the computer monitor
[HANC96]. The research focused primarily on the development and implementation of
real-time collision detection algorithms which could provide satisfactory user response.
The result was a system which could generate stereoscopic rendering rates of 20 Hz, force

update rates of over 1000 Hz with an overall system latency of 50 milliseconds[HANC96].

3. RF/Inertial Head-Tracker

A new 3D RF positioning system has been developed at Advanced Position Systems,
Inc. (ASPI Technology). Through the use of a new and innovative “dynamic calibration
method” developed by Dr. Jun Feng, the 3D RF positioning system improves the
positioning accuracy down to the millimeter scale [FENG97]. The success of the initia
positioning system prototype has prompted a proposal for a new 6-DOF RF/Inertia

tracking system. By incorporating the InterSense 3-DOF inertial tracker [INTE97] for
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orientation information, it is proposed that along range, lightweight 6-DOF cordless head-

tracker utilizing RF technology for position information can be developed [FENG97].

D. SUMMARY

This chapter presents a brief overview of available body tracking technology. Table 1
gives a consolidated evaluation summary of the sensors presented with respect to five
performance measures. This chapter does not provide a complete review of all available
tracking technologies, but rather attempts to present a general overview of this field of
technology. Interested readers are directed to [FREY 96A, FREY 96B, INTE97, MEY E92,
POLH93] for further discussion on these and various other systems which are currently
available and were not presented here. The next chapter introduces the quaternion filter
proposed by [MCGH96A] and presents the complete mathematical formulation of this

approach.
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111, A QUATERNION ATTITUDE FILTER

In order to completely describe the state of a tracked object, both position and spatial
orientation information must be obtained. In robotics, a coordinate frame is used to
describe the position and orientation of objectswith respect to some universal (earth-based)
coordinate system, Figure 5 provides an illustration of thisidea. The coordinate frameisa
local (body) coordinate system which is rigidly attached to an object in a known way
[CRAIB9]. Calculating the position and orientation of the frame determines the
“kinematic” state of the object. Various methods exist for representing the rotations
required to bring coordinate systems into alignment. This chapter presents a comparison
between the familiar and widely used Euler angle representation for rotations, and the less
common guaternion method. Also presented is a mathematical derivation of a quaternion
filter, proposed by [MCGH96A] as an alternative to filters based on Euler angles which

experience singularities at certain orientations.

i
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Figure5: Coordinate Systems (Frames) [CRAI189].
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A. QUATERNIONSVS. EULER ANGLES

1. Euler Angles

Orientation information, obtained from the types of motion trackers presented in the
previous chapter, is given in local frame coordinates and must be translated into universal
coordinates before the object can be graphically represented withinaVE. Trangating from
one coordinate system into another requires the calculation of the rotation(s) and
translation(s) which bring both systems into alignment. One of the most popular and
intuitive methods of representing the rotation part of such transformationsis by the use of
Euler angles. The Euler angle method represents the orientation of an object, with respect
to a known earth coordinate system, by applying three successive rotations, shown in

Figure 6.

P ONyERbg, b

wZrraiir, i
L

Figure 6: Azimuth, Elevation, and Roll Rotations.

These rotations about the X, y, and z axes are represented by the “elementary” rotation

matrices for roll, elevation, and azimuth, respectively, given by [CRAI89]:
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10 o0
R (®) = |0 cosp —sing (eq. 3.1)
10 sing cosg|

_cose 0 sine_
R©) =] 0 1 0 (eg.3.2)
|—sinB 0 cos6)

cosy —siny 0
R(V) = |sing cosy 0 (eq.3.3)
0 0 1

A significant disadvantage of Euler angles occurs when they are used to estimate and
calculate orientation angles for tracked objects. A specific example isthe navigation filter
used inthe NPS AUV project [MCGH95, BACH96A]. Thefilter incorporates inputs from
an onboard Inertial Measuring Unit (IMU), heading, and water-speed sensors with

intermittent GPS fixes to accurately provide continuous real-time navigational data

[BACH96A]. The problem occurswhen elevation anglesof +90° are encountered. Given
the fact that submarines can go vertical only once, this singularity is not important in such
navigation problems. However, when applied to human body tracking, singularities can
occur because there is nothing to prevent many body segments from passing through a
vertical orientation. In a recent research effort, Euler angles were used by [SKOP96] to
represent orientations in an implementation of a human body tracking system, using
Polhemus™ 3-Space® electro-magnetic tracking sensors [POLH93]. The simulation

clearly demonstrated the effects of these singularities when limbs moved through the
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vertical axis. [SKOP96] was forced to employ error-checking programming techniquesin
the software to avoid the problematic orientations and the system crashes that they would
have caused when encountering angle singularities.

The reason why elevation angles of +90° are so critical is because Euler angle

orientation estimations result in divide-by-zero errors at these angles. A schematic
representation of the attitude estimation part of the navigation filter, developed for the NPS

AUV project, showninFigure7, illustratesthislimitation [MCGH95, BACH96A]. Ascan

be seen, the accelerometer estimate of the roll angle, N is determined by using the

corresponding value for the elevation angle, 6 a’ in the following equations

— o &
Ba = asmE (eg. 3.4)
y
Q. = _asin—a (eg. 3.5)
a g[bosea

Clearly, when Ga becomes +90° , (eg. 3.5) will be undefined dueto adivide-by-zero error

caused by thefact that cos90° = 0O .

In the same portion of thefilter, Euler rates are cal culated from body rates using inputs

from the angular rate sensors. The angular rates, in body coordinates, are given by the

angular rate sensor inputs, (p, d,r) , which are multiplied by the transformation T-matrix

and converted into Euler rates as defined below
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0) 1 singtan 8 cos@tan 6| | p
6l =0 cosp -sng ||q (eq. 3.6)
U 0 singpsec 6 cos@sec | | r

Multiplying out (eg. 3.6) yields:

@ = p+qgsingtan 6+ r cosptan O (eq. 3.7)
6 = qcosp—rsing (eq. 3.8)
P = qsingsec 6+ r cos@sec 6 (eg. 3.9)

Again, elevation anglesof +90° create divide-by-zero errorsin (eg. 3.7) and (eg. 3.9). In

order to avoid such singularities, an alternative representation is needed.

Accelerometers - 0. 0. + -
X .. s . Xa . a a
(Xa1 Yar Za) ea = agn_(::]._- > ®<
_ . Ya
Estimated Bias [%a = "5 Tc0s6 *
(Pos G ') Ky
¢ 65 ™ ¢, 0
- | > |
— T(o, 6, .
> (o8 W) T [ .
|
Angular-rate +
i !
” Euler Angles K2
_ (¢, 6, W) + A _
Magnetic Compass >
(W)

Figure 7: Euler Angle Estimation Portion of SANS Filter
[MCGH95, BACH96A].
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2. Quaternions

Quaternions are an extension of the familiar complex numbers. Instead of just having

oneimaginary part, represented by i, quaternions have three “imaginary” parts, represented

by i,j, and k, al having the samevalue, /1. Thus,

i*ji=i®=-1 (eq. 3.10)
j*i=j%=-1 (eq. 3.12)
k*k=k?=-1 (eq. 3.12)

Quaternions can also be represented in three different notations. Depending upon the
particular application, it may be convenient to represent quaternions as either a linear
combination of four components, afour dimensional vector represented by the coefficients

of the linear combination, or asascalar and avector. That is, the following three notations

are equivalent:
g =w+xi+yj+zk (eg. 3.13)
g=(Wwxyz (eg. 3.14)
g = (w,V) (eg. 3.15)

When rotating vectors with quaternions, it will generally be required that unit quaternions
be used [COOK92]. Thisis done because of the convenient way in which the inverse of a
unit quaternion can be calculated. Specifically, the inverse of a unit quaternion is defined
as the conjugate of the quaternion; that is

ql=g = (w,-v) (eg. 3.16)

where gt isthe inverse of a unit quaternion and g* is the conjugate of quaternion g.
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Any scalar or three dimensional vector can be represented as a quaternion. For scalars,

the vector (0 0 0) is appended to the scalar w to obtain

q=(w000) (eq. 3.17)

In the case of athree dimensional vector, the scalar O is appended to the front of the vector

to get the equivalent quaternion.

q=(0xy?2) (eg. 3.18)

Once scalars and vectors have been properly converted to quaternions, quaternion algebra
can be applied to rotate vectors, multiply scalars, etc. Specificaly, rotation of a vector, p,

by a quaternion, q, is defined as[PAUL90]

-1
Protated = 9P (6q. 3.19)

where g is aunit quaternion given by

_ 0 . o0
gq= B:OSE’ usméD (eg. 3.20)
The symbol u in (eq. 3.20) represents the unit vector about which the vector p is to be

rotated through an angle 6. It should be noted, unlike Euler angles, quaternion rotations

reguire only two trigonometric functions to rotate a vector and experience no singularities

at any angle of rotation.

B. DERIVATION OF QUATERNION FILTER

Filters are used to minimize errors and return accurate results in an environment where
noise corrupts the measurement of the desired data. In the case under consideration, the

datais the orientation measurements made by inertial sensors used to track human motion
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withinaVE. Inertial sensors are inherently noisy and experience measurement errors due
to drift, slosh, and various manufacturing imperfections [FOXL94, FREY96A]. This
section presents a mathematical derivation of the quaternion filter proposed by
[MCGH96A] and depicted in Figure 8. This filter was developed as an aternative and
improvement to the Euler angle based filter that was designed for the AUV project at NPS
[MCGH95, BACH96A].

The quaternion attitude filter takes inputs from three separate sensors which, together,
make up theinertial tracking system. The system consists of accelerometers, angular rate

sensors, and a 3-axis magnetometer. Accelerometers measure the combination of forced
linear accelerations and the reaction force due to gravity, Ameasured = 4—§ . Since

most real-life objects do not experience constant linear accelerations (i.e. a - 0 ), when

averaged over time, accelerometers on the average return the gravity vector or local

vertical, Ameasured = jg [FOXL94, FREY96B]. Angular rate sensors measure the
angular velocity in three axes. Output from the angular rate sensors can be integrated to
determine position, but because they experience drift errors over time, a combination of
accelerometers and magnetometers are required to correct the measured data
Magnetometers measure the earth’ s magnetic field in body coordinates. The main purpose
of the magnetometer triad is to sense the drift error of the angular rate sensors about the
vertical axis which can not be sensed by the accelerometers. Together, the three sensor

types provide an accurate means of calculating orientation measurements for any object.
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Figure 8: Quaternion Filter [BACH96B, MCGH96A].
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The quaternion filter computation begins with the normalized input measurements

from the accelerometers and magnetometer, as shown in Figure 9.
Magnetometer

Gy 8, 55)

Acrelerometer

(£52)= iy iy 1R

Figure 9: Measured Orientation Vector[BACH96B].

The measurement of the local vertical and the earth’slocal magnetic field are represented
asthe 3-dimensional unit vectors given in (eg. 3.21) and (eg. 3.22), respectively.
h = (h{hyhs) (eg. 3.22)
b = (byb,bs) (eg. 3.22)
These vectors are then combined to form the complete measured orientation vector given
by
Yo = (hyhyh3b,bsb,) (eg. 3.23)

The filter uses the unit orientation quaternion, ¢, which is set when the system is

initialized, to calculate the computed measurement vector, f/((q). The computed

measurement vector is given by
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N
y(@) = (§ ma,q na) (eq. 3.24)

where m is the earth’s unit gravity vector in earth coordinates and n is the earth’s unit
magnetic field vector in earth coordinates. Both the m and n vectors are rotated into body
coordinates in order to permit comparison with the measured orientation vector given by
(eg. 3.23). The error is then computed by taking the difference between the measured

vector in (eg. 3.23) and the computed vector in (eq. 3.24), and is given by the expression

&(@)gyy = Y(@ey1 Yo, , (g 3.25)

Oneversion of the quaternion filter uses an approach known asthe*“ method of steepest
descent” to minimize the error in the computed orientation quaternion. The notion of a
mathematical gradient is required to implement the method. The gradient is defined as the
vector partial derivative of the squared error criterion function which is defined as the

sgquare of (eg. 3.25) and is given by

Q) g = € (D)1 8@ gyq (et 3.26)

The next step of the filter multiplies (eg. 3.25) by the feedback gain matrix K4, which,

for thisimplementation, is defined as

a T
K14X6 = Ky X446 (eqg. 3.27)
where, for the steepest descent
Kgxa = —kI4X4 (eg. 3.28)

and [MCGH67]
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Appendix A presents the derivation of the X matrix given in (eg. 3.29). The result of the

top-half of thefilter can then be given by

Ge = Ky, @y (eg. 3.30)

Substituting (eg. 3.27) into (eq. 3.30), gives

. T
de = Kaxa PPXgx68 @y (eq. 3.31)

The gradient of the error criterion function given in (eg. 3.26) is defined as

D (q) = 29 99 99 dorT _

T N
96y 3, 00,'3q,) > ax6"Wex1 (9. 3.32)

Appendix B presents the derivation of the gradient given in (eg. 3.32). Now, substituting

(eg. 3.32) into (eq. 3.31), yields

qE = K4X4Ep (Q)4Xl (eq. 3.33)

Thus, this new expression gives the output from the top-half of the filter.

The vector given by (eg. 3.33) will be used to correct the computed value for g which

is calculated using the bias-corrected output of the angular rate sensors in the lower |eft-

hand portion of thefilter, Figure 10. The expression for q is given by [COOK92]
=300 (eq. 3.34)

A . . : : : B
where § isthe orientation quaternion computed on the previous cycle of thefilter and ~w

is the body coordinate angular rate sensor output, (pqr), corrected for the estimated
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bias, (pb adp rb) . Using (eg. 3.33), the output of the top-half of the filter, to correct (eq.

3.34), gives

61 = q_K4X4Ep (Q)4Xl (eg. 3.39)

Theresulting vector from (eg. 3.35) isthen numerically integrated and normalized, yielding

the next approximation for the orientation quaternion, §. The approximation, ¢, can then

be used to correct the graphical representation of a tracked object within aVE simulation.

Estimeated Bias

(By dp1y)
(dy 9y 9, d5)
1.3, 0914243
9=31
Angular Rate Sensor
(Pgr) (CUSE LV sing)

Figure 10: Angular Rate Sensor Output [BACH96B].

C. SUMMARY

The filter presented above offers significant improvements over filters using Euler
angles. No singularities exist for any orientations, no trigonometric functions are required,
and unit quaternions make calculating inverses a simple matter. This type of filter would

be most desirable for applications which track human limb segments, eliminating the
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vertical axis singularities which are encountered frequently when Euler angles are used in
human motion simulations.

The next chapter presents a Lisp implementation of the quaternion filter. An inertial
system, consisting of accelerometers, angular rate sensors, and a 3-axis magnetometer, is

simulated to test the convergence and stability of thefilter.
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V. QUATERNION FILTER IN LISP

In order to validate the theory presented in the previous chapter, asimulation model was
implemented in Lisp. The model simulates output from a static inertial sensor and usesthe
guaternion filter to correct the resulting orientation quaternion. To simulate error, thefilter
isinitialized to an estimated orientation quaternion which can be offset from the sensor’s

orientation by as much as 90°. This, of course, isasimulation to evaluate the theory and

performance of thefilter. Onewould never expect to see deviationsas high as 90° in actua
implementations. A deviation that high would suggest a poorly designed filter. Since the
inertial sensor remains static throughout the simulation, the user sets the orientation
guaternion which represents the orientation of the sensor in space. For the test runs
performed in thisthesis, an orientation quaternion representing alignment along the x-axis,
(0100), was chosen. This choice was arbitrary; any quaternion would work just as well.
The known orientation quaternion of the sensor is then used to compute the output of the
simulated inertial sensors and magnetometer. Using the outputs from the simulated inertial
system and the initial orientation quaternion estimate, thefilter cal culates correctionsto the
error. If working properly, the filter should respond by gradually converging upon the
orientation quaternion of the sensor, in thiscase (010 0).

The speed at which the filter converges depends upon the convergence method used.
Two different iterative convergence methods were tested in the filter. The “method of

steepest descent”, utilizing the mathematical notion of a gradient, was used and applied as
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described in the previous chapter. Also implemented was the Gauss-Newton method

[MCGHG67] given by

Ag = _%[ Tx}_lﬂ?p (eq. 4.1)

where X represents the same matrix givenin (eq. 3.29)

X< |2
] 04

]

4x6

and D?p isthe gradient given by (eg. 3.32)

A - 00 09 09 achT= T N

Substituting (eg. 3.32) into (eg. 4.1) yields

Nigyq = —[XT x} ;i4xlx6€(m6x1 (eq. 4.2)
When using the Gauss-Newton method, (eqg. 4.2) represents the output from the top-half of
thefilter and is used to correct the rate output from the angular rate sensor in the lower |eft-
hand portion of Figure 8. It should be noted, however, that the form of the Gauss-Newton
equationin (eg. 4.2), with ascalar multiplier of -1, isonly applied to noiseless, perfect data.
That is, (eg. 4.2) treats accelerometer and magnetometer data as if they were perfect
measurements of m and n, the gravity and magnetic field vectors, respectively. Sinceinthe

real world thisis hardly ever the case, when dealing with data corrupted by noise, a scalar

multiplier a isused, defined as

a = KAt (eq. 4.3)
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where 0<a <1 . Theresulting numerical integration equation becomes

. . 1. B T, LT .

On+1 = O+ 30, WAt+a[X X] X &(q,) (eq. 4.4)
yielding the next approximation for the orientation quaternion.
A. THE SIMULATION MODEL

The quaternion filter takes five inputs, namely, accelerometer, angular rate, and
magnetometer sensor output describing measured orientation data, a delta-t, and the last

computed value of the orientation quaternion, g-hat. Accelerometer output is defined as a

vector of three components, (5<'a ya Za) , given by [MCGH96B]

X, = U+qw—rv+gsing (eg. 4.5)
ya = v+ur—pw-—gsingcoso (eg. 4.6)
Z, = W+ pv—uq—gcospcose (eq. 4.7)

To remain a purely quaternion implementation, the Euler angle representations for the
gravity vector components in (egs. 4.5, 4.6, 4.7) are replaced by equivalent quaternion
expressions. This is done by rotating the earth-based gravity vector, m, into body
coordinates using the orientation quaternion of theinertial sensor. The resulting quaternion

representation for the gravity vector, in body coordinates, is analogous to the
gsing, —gsingcos® , —gcos@cosO terms above. The Lisp implementation of the
guaternion representation for (egs. 4.5, 4.6, 4.7) isshown in Figure 11, taken from the take-

accelerometer-reading method of the inertial-sensor class located in the file sensor.lsp in

Appendix C.
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(body-gravity-vector (rotate-vector _ _ _
(quaternion-inverse (orientation-quaternion
inertial-sensor)) *m*))

(ax (+ u-dot (* w ) (* -1 v r) (second body-gravity-vector)))
(ay (+v-dot (* ur) (* -1 w p) (third body-gravity-vector)))
(az (+ w-dot (* v p) (* -1 u g) (fourth body-gravity-vectar))))

Figure 11: Code Fragment Showing Accelerometer Output Using
Quaternions.

Note that (eg. 3.19)

Protated = 9PY
isarotation of avector, p, from body coordinates to earth coordinates. Since the gravity
vector isrotated from earth coordinates to body coordinates, the inverse of (eg. 3.19) is

applied, namely,

mbody =9 Mggrind (eq. 4.8)

Thisis done by using the function rotate-vector(). rotate-vector() takes a unit quaternion
and an arbitrary vector and applies the quaternion rotation in (eg. 3.19). To effect the
reverse rotation, as is required for the gravity vector, the inverse of the orientation
guaternion is passed to rotate-vector() as shownin Figure 11. The resulting rotation isthe
desired earth-to-body vector rotation given in (eg. 4.8).

Magnetometer output is generated by a magnetometer class [FREY 96B, MCGH96C].
Analogous to the ssimulated accelerometer reading, ssmulation of the magnetometer
requires that the earth’ s magnetic field vector, n, expressed in earth coordinates, be rotated

to body coordinates. Before this can be done, however, the magnetometer simulation
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incorporatesthe deviation and dip angle [FREY 96B] characteristics of the earth’ smagnetic
fieldinthelocal Monterey, Californiaarea. Magnetic deviation isdefined asthe difference
between the north compass heading and the true geographic north at agiven location on the
earth’ ssurface. Monterey requiresacorrection of 15° [FREY 96B, MCGH96C]. Thelines
of earth’s magnetic force are parallél to the surface at the earth’ s equator. However, asthe
lines approach the magnetic poles, they become increasingly vertical. Dip angle, is the
correction for the measure of the loca downward deflection of the magnetic field. In
Monterey, a correction of —60° isapplied [FREY 96B, MCGH96C]. The correction for the
deviation and dip angle [FREY96B, MCGH96C] to the magnetic field vector is
implemented in the code fragment shown in Figure 12.

(defun earth-magneti c-field-unit-vector (deviation dip-angle)
(rest (rotate-vector (equivalent-quaternion deviation (- dip-angle) 0)
'(0100)))

;normalized earth magnetic field vector in earth coordinates for Monterey, CA.
(setf *n* (consO
(earth-magneti c-field-unit-vector (deg-to-rad 15) (deg-to-rad 60))))

Figure 12: Deviation and Dip Angle Correctionsfor the Earth’s
Local Magnetic Field [FREY 96B, MCGH96C].

Once corrected, the normalized magnetic field vector, n, is rotated to body coordinates
using the rigid body’s orientation quaternion, similar to the gravity vector, m, in the
accelerometer ssimulation. Angular rate sensor output, for thisimplementation, was kept at
(0 0 0), since the inertial sensor remains static throughout the simulation. Together, the
values calculated for each sensor simulates the output from an inertial sensor at rest and

constitutes the measured orientation vector in the quaternion filter.
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B. SIMULATION RESULTS

Each convergence method has its own test-filter function used to begin the simulation.
The user provides values for k (gradient method), or multiplier (Gauss-Newton method),
the desired initial offset of the estimated quaternion from the orientation of the sensor,
maximum number of iterations, an error tolerance, and a delta-t for the Euler integration
portion of the filter. The test-filter function for the gradient method is shown below in
Figure 13.

(defun test-filter-gradient (k-value offset iterations error-threshold delta-t)

(setf *k* k-value)

(setf Sensor (make-instance 'inertial-sensor))

(initialize Sensor)

(calibrate-magnetometer Sensor -11-11-11)

(let*  ((accelerometer (take-accel erometer-reading Sensor))
(magnetometer (take-magnetometer-reading Sensor))
(angular-rate (take-angular-rate-sensor-reading Sensor))

(g-hat offset)
(deltact delta-t)
(error 1)

(do ((x 1 (1+x)))

((> x iterations))
(format t "~%~%~k~k~k*~k~k~k~k* Iteralon ,,_A **********,._%" X)
(if (>= error error-threshold)

(setf output (quaternion-filter-gradient accelerometer
magnetometer
angular-rate
g-hat
delta-t)

g-hat (firstn 4 output)

error (error-difference (lastn 6 output)))

(setf x (1+ iterations))))))

Figure 13: Gradient Convergence Method.

The function instantiates an instance of an inertial sensor, which has a super class of
guaternion-rigid-body. Associated with the new inertial sensor object is a slot, inherited

from quaternion-rigid-body, called posture. Posture is a vector containing both position

38



and orientation information, (xe ye ze g0 gl g2 g3), for the object instance. The default
posture is set to (0 0 0 0 1 0 0), corresponding to a position at the origin of the earth
coordinate system and an orientation quaternion of (0 1 0 0), as shown in Figure 14 below.

(defclass quaternion-rigid-body ()

;the vector (xeye ze g0 g1 g2 g3).
(posture
initform' (00001 00)
‘initarg :posture
:accessor posture)

Figure 14. Posture Slot Default Value.

The quaternion-rigid-body class also has adlot called orientation-quaternion. Orientation-
guaternion contains the last four values of the dot posture, corresponding to the quaternion
portion of the rigid body state. This dlot isthen used to rotate al vectors within the filter
implementation.

After the test function initializes the sensor and calibrates the magnetometer, readings
from each of the three sensors of the inertial tracking system are taken. These values are
assigned to variables corresponding to each of the three different sensors. Thisisdoneonly
once in thisimplementation of the simulation because the sensor remains static. Therefore,
the posture of the sensor does not change, requiring no updatesto thefilter be made. A real
system would need to take readings from the individual sensorson every iteration to correct
for varying orientations of a moving sensor package.

Thetest function then enters aloop which calls the appropriate version of quaternion-
filter() until one of two conditions are met. The loop can either terminate after completing
the maximum number of iterations, whether or not the filter has converged, or when the

orientation-quaternion estimation is within the specified error-tolerance. The values of all
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critical variables are printed on every iteration to allow for easy evaluation of filter
performance.

As mentioned above, two convergence methods were tested in the implementation of
the quaternion filter. The gradient method, presented in Chapter 3, guarantees that alinear
convergence to a local minimum will occur given a sufficiently small value for k. The
value of k represents the size of the step taken along the gradient vector towards the
minimum value, where the gradient vector lies perpendicular to the contour lines of agiven
surface. Large valuesfor k mean large steps with faster convergence, but the possibility of
overshooting the local minimum. Small values for k mean smaller steps with slower
convergence, and areduced chance of overshooting. An optimal value for k can be chosen
using a method called the Newton-Raphson iteration [MCGHG67]. This method was not
used in the this simulation and is beyond the scope of thisthesis. Filter performance, using

the gradient method, was good. The filter was given afairly large error. Specificaly, an

offset of 20° from the orientation quaternion of (O 1 0 0), given by (0 .939692621

342020143 0), was used to initialize the filter. The filter converged in an acceptable

number of iterations with k valuesin therange 0.7<k<1.2 , averaging 22 iterations,

with the best performance a8 k = 1.2, 17 iterations. Using an error of 10°, (O

.9848077530 .173648177 0), yielded better results, as expected. The same range of k

values averaged 15 iterationsto convergewith k = 1.2 being the best, converging in 12

iterations. The complete test runs are included in Appendix D.
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Test runs using the Gauss-Newton method well out-performed the gradient method.
Gauss-Newton converges quadratically [MCGHG67], often requiring only one iteration for
small errors. Test runs, similar to the gradient method, were performed using the perfect
sensor multiplier of -1. It should be noted that the call to test-filter-gauss-newton() is made
with the multiplier set to 10 vice 1. Referring to (eg. 4.3)

o = kAt
the multiplier a is expressed as the product of a constant, k, and At. Since delta-t is
treated as a separate variable in the code, set to 0.1 in this simulation, the value given to the
multiplier should cause (eg. 4.3) to equal 1 when performing the numerical integration in

(eq. 4.9)
. . 1. B T, L. T .
Un+1 = O+ 30, WAt+a[X X] X &(q,)
Therefore, a value of 10 for the variable multiplier yields the correct value for (eg. 4.3).

Also, a isactually negative, but thisistaken care of in the code, when calculating the value

of (eg. 4.2)
-1 T
Algxy = ‘[xTx} axalax6E@Dpx1
as shown in Figure 15

(delta-q  (scalar-multiply-vector (* -1 multiplier)
(post-multiply X-squared-inv (post-multiply X-trans error))))

Figure 15: Gauss-Newton Equation.
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Thiswasdonein order to ssimplify the function call, avoiding inadvertent callswith positive

values for the multiplier. Using the same 10° and 20° errors for the initial orientation
guaternion estimation as the gradient method test runs, the Gauss-Newton method gave the

following results, shown in Figure 16 and Figure 17.

(test-filter-gauss-newton 10 10-degrees 10 .001 .1)
initial g-hat (0 0.984807753 0.173648177 0)

kkkkkkkhkk Iteratlon 1 kkkkkkkkkk

new-g-hat (5.62901044742602E-4 0.999968870927989 0.0045325612552949 -
0.00643398833417277)

kkkkkkkhkk Iteratlon 2 kkkkkkkkkk

new-g-hat (-2.78220979546233E-5 0.999999999558864 -6.85807994618875E-6 -
7.82114313870801E-6)

Figure 16: Gauss-Newton Iteration with 10-degreesError

(test-filter-gauss-newton 10 20-degrees 10 .001 .1)
initial g-hat (0 0.939692621 0.342020143 0)

kkhkkkkkhkkx |te|’at|0n 1**********

new-g-hat (-0.00212904587800956 0.999131190052156 0.0337658829594332 -
0.0243351058469248)

kkhkkkkkhkkx |te|’at|0n 2**********

new-g-hat (-7.57124440093844E-4 0.999999679561069 -1.35855048017928E-4 -
2.21774091515007E-4)

kkhkkkkkhkkx |te|’at|0n 3**********

new-g-hat (-1.06750499371424E-8 0.999999999999999 -1.43682207139414E-8
4.92518736799743E-8)

Figure 17: Gauss-Newton Iteration with 20-degreesError.

C. SUMMARY

The theory presented in Chapter 3 has been shown to be sound, as evidenced by the
results obtained in the test runs presented. Two methods of convergence were successfully
implemented. The gradient method showed acceptable results, converging quickly for
large errorsin the initial estimation of the orientation quaternion. Gauss-Newton, on the

other hand, resulted in quadratic convergence, requiring only 9 iterations to converge for
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aninitia error of 89° ! Giventheinitial test results, it can be concluded that, the quaternion
filter is aviable adternative to Euler angle based filters, especially in the realm of human
body tracking. The errors used in the test runs were much larger than should ever be
encountered in an actual inertial tracking system implementation. The quaternion filter,
given a reasonably accurate inertial tracking system, should never allow the orientation
guaternion to be off as much as was shown in this thesis. The next chapter presents the
results of quantitative and qualitative analysis done on an existing inertial tracking system,

the Angularisinertial tracker, manufactured by InterSense, Inc. [INTE97].
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V. RESULTS

A. ANGULARISINERTIAL TRACKING SYSTEM

The Angularis tracker is a palm-sized plastic block which contains three orthogonal
angular rate sensors, three orthogonal accelerometers, and a two-axis magnetometer to
determine the angular orientation of the human head [FREY 96A]. Builtinitially for HMD
applications, the extensibility of the Angularisto entire body tracking is quickly becoming
a possibility. Inertial systems, like the Angularis, do not suffer from the traditional
shortcomings of sensors based on mechanical, electromagnetic and acoustic technologies.
They are self-contained, requiring no outside sourceto cal culate spatial orientation, making
them immune to outside interference and extending their range beyond that of any
traditional tracking system. Until recently, the only limitation to applying inertia
navigation technology to body tracking was the fact that inertial sensors were big, bulky
unwearable devices. However, with the advent of state-of-the-art, micro-machined inertial
sensor components, this concern is no longer afactor.

The question being investigated is whether or not the Angularis, in its present
configuration, would be applicable to human body limb segment tracking within a VE
simulation. Since the sensor was originally built to be worn as a head tracking device,
inherent assumptions in the design of the sensor and filtering technique could possibly
prove to be alimiting factor in extending its use to entire body tracking.

The system consists of the inertial tracker and a computer processing unit which
receives data from the sensor, processesit, and deliversfiltered orientation data to the host

computer via an RS-232 cable connection. In its present configuration, data from the
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individual sensors, within the plastic block, is inaccessible. A “hard-coded” Kaman
filtering technique is used to filter data from the sensor [INTE96]. The filter is “hard-
coded” in the sense that it isimpossible to apply any outside filter, such as the quaternion
filter, to the sensor output. The only choice given to the user is between full-order or
reduced-order Kalman filtering [INTE96]. Reduced-order is the default, allowing the
system to run above 500 Hz and delivering almost the same performance as full-order
Kaman filtering [INTE96]. Once the filtered data is passed to the host computer, VE
software running on the host can use the orientation data to update graphical
representations of tracked objects.

In order to test the performance of the Angularis sensor, mechanical tilt-table tests

were performed at varying rates of rotation. The sensor was strapped onto the tilt-table and

allowed to measure the roll angle as the unit was rotated through 45°. The roll was
performed two times at each rate, allowing the sensor to stabilize at the end of each roll for
20 seconds. Theresults are shown in Figure 18, Figure 19, and Figure 20. The Angularis
performed well, evidenced by the outputs shown on the graphs. However, the sensor does
not correct for errors at the end of the roll as in the SANS filter tests by [BACH96A,
ROBE97]. Specificaly, while the SANS filter graphs show a gradual correction being
applied to the angle as the system stabilizes at the end of the roll, no such corrections are
made by the Angularis. Whatever angle is returned at the end of the roll, no matter what
the error, the sensor “locks on” to that reading and does not correct. Thisis shown by the

flat lineat theend of each roll inthe graphs. Thislack of immediate correction for the error
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45-degree Roll, 10-degrees/sec.

Figure 18: 45-Degree Roll at 10-Degrees/Second.
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may be attributed to the fact that the sensor was originally designed for HMD applications.
In his paper, [FOXL94] explains the drift correction method applied to the first prototype
of the Angularis sensor. Using the heuristic that the human head pauses every 10 seconds
in atypical HMD simulation, [FOXL94] explains that this pause would allow the fluid-
filled inclinometer to settle to its correct pitch and roll in approximately 1/4 second. When
this occurred, the orientation values would be corrected and reset. However, the error
would not be corrected all at once. Gradual correction of the error was done to prevent
jarring the user, areal concern with HM D applications[FOXL94]. Thisdesign feature may
explain the output shown in the graphs above.

Thefact that individual sensor outputs, from the components of theinertial system, are
not accessible makes the overall system limited in its application. It is doubtful that body
tracking applicationswould fare well with the current configuration. A qualitative test was
performed using the software provided by the manufacturer. The software represented the
sensor block as a virtual cube which moved in response to the movements applied to the
actual sensor. It was observed that the graphical representation would not correspond to
movements applied to the sensor after just afew arbitrary rotations. When the sensor was
placed flat on the table, the graphical representation manifested the errors which had
accumulated. This error could be corrected by jiggling the sensor until the graphical
representation matched the orientation of the actual sensor. This anomaly may be able to
be corrected if the system had allowed the application of an alternative filter. Graphs

representing the output from random rotations are shown in Figure 21 and Figure 22. The
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Random Roll Motions
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Figure 21: Roll Angle for Random Mations.
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Figure 22: Pitch Angle for Random Mations.
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sensor was rotated arbitrarily and placed flat on atable and then rotated again. This was
repeated several times to simulate the random motions that may be encountered when
tracking a human within aVE. The figures clearly show that when the sensor was placed
in its reference position, flat on the table, it would report erroneous orientation data. This
is shown by the flat line portions of the graphs which represent no rotations being applied
tothe sensor. Clearly, theselinesare not at their reference position as they should be when
the sensor is at rest. These results are concurrent with the performance observed when
using the manufacturers graphical software. The error corrections being applied to the
sensor output could not keep up with the rapid random rotations being applied. Since
tracking human limb segments will doubtlessly encounter such random motions, for such
applications the sensor needs to be re-configured to allow the application of an alternative

filtering technique such as the quaternion filter presented in this thesis.

B. QUATERNIONFILTER

The results of the tests performed on the implementation of the quaternion filter were
better than expected. Thefilter performed extremely well under extreme error conditions.
Deviations up to 90° were corrected by the filter. Applying the Gauss-Newton iteration

method provided quadratic convergence to the correct orientation quaternion, in some
cases in only one iteration. Overall, the thesis was a success, in that the theory for the
guaternion filter was proven correct and an implementation of the filter now exists which

can be applied to any VE simulation incorporating inertial tracking sensors technology.
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The next, and final chapter, presents some final thoughts and recommendations for future

work relating to inertial tracking of limb segment angles.



VI. SUMMARY AND CONCLUSIONS

A. SUMMARY

In this thesis, a quaternion filter is presented as an alternative to filters using Euler
angles. This is because Euler angle implementations could encounter singularities that
make them undesirable for human body tracking applications. Specifically, filters

designed to use Euler angles experience divide-by-zero errors when calculating estimates

of orientation at elevation anglesof +90° (asshowninFigure7). Thislimitationiscritical
in simulations requiring the tracking of human limb segments which often rotate through
vertical orientations. The work of this thesis shows that the quaternion filter proposed by
[MCGH96A] provides a sound and viable solution to the Euler angle singularity problem,
while at the same time simplifying the required filter computations.

Two different quaternion filter convergence methods were implemented and tested.

The gradient descent method and the Gauss-Newton method [MCGH67] were tested under

extreme error conditions of up to 90° . In both cases, the filter was able to quickly and
accurately correct to the appropriate orientation quaternion. The gradient descent method
provided gradual convergence, usually needing dozens of steps, while the Gauss-Newton
method converged quadratically, often requiring just a single iteration for small initial
errors. The results of the initial tests provide a decisive demonstration of the quaternion
filter’ s applicability to VE simulations utilizing inertial sensors for human body tracking.
The Angularisinertial tracker [INTE9Q7] was investigated as a possible alternative to

traditional tracking methods by mechanical, electromagnetic, and acoustic tracking
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technologies. The Angularis was built specifically as an inertial tracker for HMD
applications. It was one of the goals of this thesis to investigate the viability of extending
the use of the Angularis inertial sensor to human limb segment tracking. Tilt-table tests
resulted in very accurate readings when this tracker was given steady, consistent rotations
(shown in Figures 18, 19, and 20). However, when tested by hand, using rapid random
rotations and orientations, the system had difficulty returning to its reference position
(shownin Figures 21 and 22). Theseresults suggest that the Angularisinertial system, in
its current configuration, would not perform as well as would be required for human limb
segment tracking applications. However, it is the author's understanding that this

limitation can be removed by the manufacturer at the request of users.

B. CONCLUSIONS

It has be shown that filters based on quaternions have significant advantages for human
body tracking in comparison to the more common Euler angle approach to attitude
estimation. Two different convergence methods were investigated and tested in
implementing the quaternion filter. Although both yielded acceptable results, the Gauss-
Newton method was shown to be superior. Resulting in quadratic convergence, Gauss-
Newton appears to be the preferred convergence method for further investigations
concerning quaternion filters.

The integration of the quaternion filter with the Angularisinertial system proved to be
an impossibility. The system, as it currently exists, does not allow for the application of
independent filtering software. Better filtering techniques arerequired if the sensor isto be

applied to human limb segment tracking. It has been demonstrated that a filter using
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guaternions would be a viable solution to the filtering deficiencies experienced in the

Angularistests. A coupling of both entities could result in avery competitive system.

C. FUTURE WORK

The quaternion filter still requires extensive testing under realistic conditions using
actual inertial sensorsimplemented in aVE ssimulation. Thisthesis presented asimulation
incorporating “perfect sensors’. No attempt was made to reproduce noise levels similar to
those present in real sensor output. Research of the effects of noise on the filter's
performance is still needed and required. Also, the use of dynamic objects must be
investigated. The current evaluation was conducted using a simulated static sensor with a
constant orientation. This type of simulation does not realistically demonstrate the
environment in which the filter will be required to operate. In order to be useful, the filter
must be capable of performing under the dynamic conditions of a typical VE simulation.
The Angularis sensor could also be further improved by reducing its current size. The
Angularisiscertainly an improvement over traditional inertial systems, but is still abit too
large for reasonable incorporation into a body suit capable of tracking an entire human
body. It is the author’s opinion that, notwithstanding the current limitations of the
Angularis sensor, the cutting edge tracking systems of the future will incorporate similar
inertial sensorswith filtering being done by aquaternion filter similar to, if not the same as,
the one presented in thisthesis. It is hoped that the work of this thesis makes a significant

contribution toward the realization of such systems.
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APPENDIX A. DERIVATION OF X MATRIX

The X matrix is defined by (eqg. 3.29) as

T_ |9
! aqi 4%6

The elements of the 4x6 matrix come from the partial derivatives of the components of the
computed measurement vector, f/(Q) , given by (eq. 3.24)

Soan _ o=l oA=1 o

y(@) = (@ "mg, g "nq)
So, taking the partial derivative of (eq. 3.24) with respect to q, theresult is

oy _

3 - 9 g he e lng
04, 04

(§7'ma, g ng) (eq.A2)

Applying the product rule to (eg. A.1), it follows that

G - B il W] @
where
;qqo = (1000) (eq. A.3)
and
09 _ (1000) (eq. A4)

aqo
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Likewise, for g1, g2, and g3.

ay_@q 1 0g g
,\m+ MN—, ——
aq, g, q 33, 00,

ql
ng+q lnan
[

04,

-1
g 04 qU

9 - @q mg+ 4§ 1m——q 0q_ ng+q n———an
2 2]

88, ~ [0, 08, 94 2
~ ~—1 N

oy _{%q 0§ 0§ ~ . -1 9§
m m—:— —nNnq + n——-~_

9, o, ™0 "4 Mag, ag; "9 Mag

where the corresponding quaternion partial derivatives are

aq
1 =(0100
29 ( )
aq

= (0010
o, ( )
aq

= (0001
2, = ( )

and, the partial derivatives of the inverse are given by

99 _ (0-100)

99 _ (00-10)
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(eg. A.5)

(eg. A.6)

(eq. A7)

(eg. A.8)

(eq. A.9)

(eg. A.10)

(eg. A.11)

(eg. A.12)



-1

0q
—/— =(000-1 eg. A.13

The partia derivatives as defined in (eg. A.2), (eg. A.5), (eg. A.6), and (eq. A.7) result in

the partial derivatives of the mand n vectors with respect to g, g;, 0y, and gz, respectively.
Taking the results computed above, the Xg,4 matrix can be constructed as follows

x = |9y 8y 3y 0y

Y Y Y (eq. A.14)
09, 04, 04, 004 6x4

Note that the partial derivatives are column vectorsin the X matrix, and that the transpose

of X isrequired when applied in the filter. Thus, (eg. 3.29) becomes

d

<

X
I
Sy U S
SY) SY S
Sl sl o)
2 Sl SI% 4

(o)
O
)

4x6
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APPENDIX B. DERIVATION OF GRADIENT

In the filter the gradient of the error criterion function @(Q) , is given by (eg. 3.32)

B () = 1@ 99 00 dolull

T ~
=~ , , = 2X, o nE
qu aql aqz aqSD 4x6 (q)6x1

where @(q) is given by (eq. 3.26)

~ T, ~
O(A)141 = € (q)1x6£(q)6xl

In order to simplify the derivation of the gradient, consider the case of 1 dimensional

orientation vectors, where the measured vector is Yy = (h,) and the calculated vector

isy(q) = (Fll). The error then becomes

e(g) = hy—h; (eq. B.1)
and
N 2 ~ 2 ~2 ~ 2
®@q) = ¢ = (hy—hy) = hy-2hhy+hy (eg. B.2)

Taking the partial derivative of (eq. B.2) with respect to (|, yields

a(p ~ aﬁl aﬁl Gﬁl ~ aﬁl "

— = 2hy==—-2h,=——= = 2—=—=(hy—h;) = 2—¢(Q) (eg. B.3)
B) 19, “log,  “0q, 1 ! 04,

Likewise, for the partial derivativeswith respect to ([, , g, and (3. Thus, extending this
result to the 6 dimensional case and arranging the partial derivativesin matrix form yields

(eq. 3.32).
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APPENDIX C. SSIMULATION MODEL CODE

File: test-filter.Isp

; positive offsets from the positive x-axis

(setf O-degrees '(0100))

(setf 1-degree '(00.9998477 0.017452406 0))

(setf 2-degrees ‘(0 0.99939083 0.034899497 0))

(setf 3-degrees ‘(0 0.99862953 0.052335956 0))

(setf 4-degrees '(0 0.99756405 0.069756474 0))

(setf 5-degrees '(0.9961946981 .0871557427 0))

(setf 10-degrees ‘(0 .9848077530 .173648177 0))

(setf 20-degrees '(0 .939692621 .342020143 0))

(setf 30-degrees '(0 .8660254037 .5 0))

(setf 40-degrees '(0 .766044443119 .642787609687 0))
(setf 50-degrees '(0 642787609687 .766044443119 0))
(setf 60-degrees ‘(0 .5 .8660254037 0))

(setf 70-degrees '(0 .342020143 .939692621 0))

(setf 80-degrees (0 .173648177 .9848077530 0))

(setf 85-degrees ‘(0 .0871557427 .9961946981 0))

(setf 89-degrees ‘(0 .017452406 .999847695 0))

(setf 90-degrees'(00 1 0))

(defun error-difference (error)
(apply #+ (mapcar #'square error)))

(defun test-filter-gradient (k-value offset iterations error-threshold delta-t)

(setf *k* k-value)

(setf Sensor (make-instance 'inertial-sensor))

(initialize Sensor)

(calibrate-magnetometer Sensor -11-11-11)

(let* ((accelerometer (take-accel erometer-reading Sensor))
(magnetometer (take-magnetometer-reading Sensor))
(angular-rate (take-angular-rate-sensor-reading Sensor))
(g-hat offset)

(deltat  deltat)
(error 1)
(format t "~%initia g-hat ~A ~%" g-hat)
(do ((x 1 (1+ x)))
((> x iterations))
(format t "~%~%********* Iteratlon ,.._A **********~%" X)
(if (>= error error-threshold)

(setf output (quaternion-filter-gradient accelerometer
magnetometer
angular-rate
g-hat
deltart)

g-hat (firstn 4 output)
error (error-difference (lastn 6 output)))
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(setf x (1+ iterations))))))

(defun test-filter-gauss-newton (multiplier offset iterations error-threshold delta-t)

(setf Sensor (make-instance 'inertial-sensor))

(initialize Sensor)

(calibrate-magnetometer Sensor -11-11-11)

(let* ((accelerometer (take-accel erometer-reading Sensor))
(magnetometer (take-magnetometer-reading Sensor))
(angular-rate (take-angular-rate-sensor-reading Sensor))
(g-hat offset)

(deltat  deltat)
(error 1)
(format t "~%initia g-hat ~A ~%" g-hat)
(do ((x 1 (1+ x)))
((> x iterations))
(format t "~%~%********* |teraIIOn ,.._A **********~%" X)
(if (>= error error-threshold)

(setf output (quaternion-filter-gauss-newton multiplier
accelerometer
magnetometer
angular-rate
g-hat
deltart)

g-hat (firstn 4 output)
error (error-difference (lastn 6 output)))
(setf x (1+ iterations))))))
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File: sensor.Isp

(defclass inertial-sensor (quaternion-rigid-body)
((accelerometer
;initform (0 0 0)
:accessor accel erometer)
(angular-rate-sensor
;initform (0 0 0)
:accessor angular-rate-sensor)
(magnetometer
-initform (make-instance '3-axis-magnetometer)
:accessor magnetometer)))

(defmethod take-accel erometer-reading ((inertial-sensor inertial-sensor))
(let* ((u (first (velocity inertial-sensor)))
(v (second (velocity inertial-sensor)))
(w (third (velocity inertial-sensor)))
(p (fourth (velocity inertial-sensor)))
(q (fifth (velocity inertial-sensor)))
(r (sixth (velocity inertial-sensor)))
(u-dot (first (velocity-growth-rate inertial-sensor)))
(v-dot (second (velocity-growth-rate inertial-sensor)))
(w-dot (third (velocity-growth-rate inertial-sensor)))
(gl (fifth (posture inertial-sensor)))
(92 (sixth  (posture inertial-sensor)))
(93 (seventh (posture inertial-sensor)))
(body-gravity-vector (rotate-vector
(quaternion-inverse (orientation-quaternion
inertial-sensor)) *m*))

(ax (+ u-dot (* w q) (* -1 v r) (second body-gravity-vector)))
(ay (+v-dot (* ur) (* -1 w p) (third body-gravity-vector)))
(az (+ w-dot (* v p) (* -1 u q) (fourth body-gravity-vector))))

(setf (accelerometer inertial-sensor)
(normalize-vector (list ax ay az)))
(accelerometer inertial-sensor)))

(defmethod take-angular-rate-sensor-reading ((inertial-sensor inertial-sensor))
(setf (angular-rate-sensor inertial-sensor)
(cons (fourth (velocity inertial-sensor))
(cons (fifth (velocity inertial-sensor))
(list (sixth (velocity inertial-sensor))))))
(angular-rate-sensor inertial-sensor))

; Max and min raw output over all orientations.
(defmethod calibrate-magnetometer
((inertial-sensor inertial-sensor) xmin xmax ymin ymax zmin zmax)
(setf (x-bias (magnetometer inertial-sensor)) (/ (+ xmax xmin) 2)
(y-bias (magnetometer inertial-sensor)) (/ (+ ymax ymin) 2)
(z-bias (magnetometer inertial-sensor)) (/ (+ zmax zmin) 2)
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(x-scale-factor (magnetometer inertial-sensor)) (/ (- xmax xmin) 2)
(y-scale-factor (magnetometer inertial-sensor)) (/ (- ymax ymin) 2)
(z-scale-factor (magnetometer inertial-sensor)) (/ (- zmax zmin) 2)))

(defmethod normalize-magnetometer-measurement-vector
((inertial-sensor inertial-sensor))
(let* ((vx (x-reading (magnetometer inertial-sensor)))
(vy (y-reading (magnetometer inertial-sensor)))
(vz (z-reading (magnetometer inertial-sensor)))
(xbias (x-bias (magnetometer inertial-sensor)))
(ybias (y-bias (magnetometer inertial-sensor)))
(zbias (z-bias (magnetometer inertial-sensor)))
(xscale (x-scale-factor (magnetometer inertial-sensor)))
(yscale (y-scale-factor (magnetometer inertial-sensor)))
(zscale (z-scale-factor (magnetometer inertial-sensor)))
(wx (normalize-reading vx xbias xscale))
(wy (normalize-reading vy ybias yscale))
(wz (normalize-reading vz zbias zscale)))
(normalize-vector (list wx wy wz))))

(defmethod take-magnetometer-reading ((inertial-sensor inertial-sensor))
(let* ((g-inv (quaternion-inverse (orientation-quaternion inertial-sensor)))
(reading (rotate-vector g-inv *n*)))

(setf (x-reading (magnetometer inertial-sensor)) (second reading)
(y-reading (magnetometer inertial-sensor)) (third reading)
(z-reading (magnetometer inertial-sensor)) (fourth reading)
(magnetic-normal-vector (magnetometer inertial-sensor))

(normalize-magnetometer-measurement-vector inertial-sensor))

(magnetic-normal-vector (magnetometer inertial-sensor))))

(defclass 3-axis-magnetometer (quaternion-rigid-body)
((x-reading :accessor x-reading)
(y-reading :accessor y-reading)
(z-reading :accessor z-reading)
(x-bias :accessor x-bias)
(y-bias :accessor y-bias)
(z-bias :accessor z-bias)
(x-scale-factor :accessor x-scale-factor)
(y-scale-factor :accessor y-scale-factor)
(z-scale-factor :accessor z-scal e-factor)
(magnetic-normal-vector :accessor magnetic-normal-vector)))

(defun normalize-reading (value bias scale-factor)
(/ (- value bias) scale-factor))
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File: quaternion-filter

(defun earth-magneti c-field-unit-vector (deviation dip-angle)
(rest (rotate-vector (equivalent-quaternion deviation (- dip-angle) 0)
'(0100)))

;normalized earth magnetic field vector in earth coordinates for Monterey, CA.
(setf *n* (cons O (earth-magnetic-field-unit-vector (deg-to-rad 15) (deg-to-rad 60))))

;normalized gravity vector in earth coordinates.
(setf *m* '(0001))

;estimated sensor bias in body coordinates.
(setf *angular-rate-sensor-bias* '(0 0 0))

(defun cal cul ated-measurement-vector (quaternion)
(append (rest (rotate-vector (quaternion-inverse quaternion) *m*))
(rest (rotate-vector (quaternion-inverse quaternion) *n*))))

(defun make-X-transpose-matrix (quaternion vector)
(list (append (rest (partial-derivative-q0 quaternion (firstn 4 vector)))
(rest (partial-derivative-q0 quaternion (cddddr vector))))
(append (rest (partial-derivative-gl quaternion (firstn 4 vector)))
(rest (partial-derivative-ql quaternion (cddddr vector))))
(append (rest (partial-derivative-g2 quaternion (firstn 4 vector)))
(rest (partial-derivative-g2 quaternion (cddddr vector))))
(append (rest (partial-derivative-g3 quaternion (firstn 4 vector)))
(rest (partial-derivative-g3 quaternion (cddddr vector))))))

; dlternative way to compute partial derivatives
(defun make-X-transpose-matrix-2 (quaternion m n)
(list (partial-derivative-g0-2 quaternion (append m n))
(partial-derivative-ql-2 quaternion (append m n))
(partial-derivative-q2-2 quaternion (append m n))
(partial-derivative-gq3-2 quaternion (append m n))))

(defun quaternion-filter-gradient (accelerometer

magnetometer

angular-rate

g-hat delta-t)

(let* ((measured-y (append accelerometer magnetometer))
(calculated-y (cal cul ated-measurement-vector g-hat))
(error  (vector-subtract calculated-y measured-y))
(X-trans  (make-X-transpose-matrix g-hat (append *m* *n*)))
(gradient-phi (scalar-multiply-vector 2 (post-multiply X-trans error)))
(K (scalar-multiply-matrix (* -1 *k*) (unit-matrix 4)))
(omega (cons'0 (vector-subtract angular-rate * angul ar-rate-sensor-bias*)))
(g-dot (scalar-multiply-vector 0.5 (quaternion-product g-hat omega)))
(g-hat-dot  (vector-add g-dot (post-multiply K gradient-phi)))
(new-g-hat  (normalize-vector (vector-add g-hat
(scalar-multiply-vector delta-t g-hat-dot)))))
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(format t "~%q-hat ~A ~%" g-hat)

(format t "~%measured-y ~A ~%" measured-y)
(format t "~%calculated-y ~A ~%" calculated-y)
(format t "~%error ~A ~%" error)

(format t "~%gradient-phi ~A ~%" gradient-phi)
(format t "~%new-g-hat ~A ~%" new-g-hat)
(append new-g-hat error)))

(defun quaternion-filter-gauss-newton (multiplier
accelerometer
magnetometer
angular-rate
g-hat delta-t)
(let* ((measured-y (append accelerometer magnetometer))
(calculated-y (calcul ated-measurement-vector g-hat))
(error (vector-subtract calculated-y measured-y))
(X-trans  (make-X-transpose-matrix g-hat (append *m* *n*)))
(X-squared-inv (matrix-inverse (matrix-multiply X-trans (transpose X-trans))))
(delta-q  (scalar-multiply-vector (* -1 multiplier)
(post-multiply X-sgquared-inv (post-multiply X-trans error))))
(omega (cons'0 (vector-subtract angular-rate * angul ar-rate-sensor-bias*)))
(g-dot (scalar-multiply-vector 0.5 (quaternion-product g-hat omega)))
(g-hat-dot  (vector-add g-dot delta-q))
(new-g-hat  (normalize-vector (vector-add g-hat
(scalar-multiply-vector delta-t g-hat-dot)))))
(format t "~%q-hat ~A ~%" g-hat)
(format t "~%measured-y ~A ~%" measured-y)
(format t "~%calculated-y ~A ~%" calculated-y)
(format t "~%error ~A ~%" error)
(format t "~%delta-q ~A ~%" delta-q)
(format t "~%new-g-hat ~A ~%" new-g-hat)
(append new-g-hat error)))
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File: quat-rigid-body.lsp

(defconstant * gravity* 32.2185)
(defclass quaternion-rigid-body ()

;the vector (xeye ze q0 g1 g2 g3).
(posture

;initform (00001 00)

‘initarg :posture

:accessor posture)

;the vector (xe-dot ye-dot ze-dot gO-dot g1-dot g2-dot g3-dot).
(posture-rate

‘initarg :posture-rate

:accessor posture-rate)

;the vector (uv w p gr) in body coordinates.
(velocity

;initform (00000 0)

‘initarg :velocity

:accessor velocity)

;the vector (u-dot v-dot w-dot p-dot g-dot r-dot).
(velocity-growth-rate
:accessor velocity-growth-rate)

;the vector (Fx Fy Fz L M N) in body coordinates.
(forces-and-torques

;initform (list 0 O (- *gravity*) 00 0)

-accessor forces-and-torques)

;the vector (Ix ly 1z) in principal axis coordinates.
(moments-of-inertia

‘initform (11 1)

‘initarg :moments-of-inertia

:accessor moments-of-inertia)

(mass

‘initform 1

‘initarg :mass

:aCCessor mass)
(orientation-quaternion

‘initform (01 00)

:aCcCcessor orientation-quaternion)
(position-quaternion

;initform (000 0)

:accessor position-quaternion)

(time-stamp
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:accessor time-stamp)

;(0xy z) in body coordinates for each node.

(node-list
;initform'((0000) (0550) (0-550) (0-5-50) (05-50))
‘initarg :node-list
:accessor node-list)

(polygon-list
sinitform '((1 2 3 4))
‘initarg :polygon-list
:accessor polygon-list)

;(xy z 1) in earth coordinates.
(transformed-node-list
:accessor transformed-node-list)))

(defmethod initialize ((body quaternion-rigid-body))
(setf (transformed-node-list body)
(mapcar # (lambda (node-location) (append (rest node-location) '(1)))
(node-list body)))
(setf (velocity-growth-rate body) (update-vel ocity-growth-rate body))
(setf (posture-rate body) (earth-velocity body))
(setf (time-stamp body) (get-constant-delta-t body)))

(defmethod quaternion-move ((body quaternion-rigid-body) x y z g0 g1 g2 g3)
(setf (posture body) (list xy zq0 gl g2 g3))
(setf (orientation-quaternion body) (list g0 g1 g2 g3))
(setf (position-quaternion body) (append '(0) (list x y z)))
(transform-node-list body))

(defmethod get-constant-delta-t ((body quaternion-rigid-body)) 0.1)

(defmethod get-delta-t ((body quaternion-rigid-body))
(let* ((new-time (get-internal-real-time))
(delta-t (/ (- new-time (time-stamp body)) 1000)))
(setf (time-stamp body) new-time)
delta-t))

(defmethod update-rigid-body ((body quaternion-rigid-body))
(let* ((delta-t (get-constant-delta-t body)))
(update-posture body delta-t)
(setf (orientation-quaternion body)
(list (fourth (posture body)) (fifth (posture body))
(sixth (posture body)) (seventh (posture body))))
(setf (position-quaternion body)
(list O (first (posture body))
(second (posture body)) (third (posture body))))
(transform-node-list body)
(update-velocity body delta-t)
(update-vel ocity-growth-rate body)))
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(defmethod update-vel ocity-growth-rate ((body quaternion-rigid-body))
(setf (velocity-growth-rate body)
(multiple-value-bind
(FXFyFzZLM N uvwpqr Ixlylz)
(values-list
(append
(forces-and-torques body)
(velocity body)
(moments-of-inertia body)))
(list(+ (* vr) (* -1w q) (/ Fx (mass body))
(* -1 (second (rotate-vector
(quaternion-inverse (orientation-quaternion body))
(append ‘(0 0 0) (list *gravity*))))))
(+ (* wp) (* -1ur) (/ Fy (mass body))
(third (rotate-vector
(quaternion-inverse (orientation-quaternion body))
(append ‘(0 0 0) (list *gravity*)))))
(+ (* ug) (* -1vp) (/ Fz (mass body))
(fourth (rotate-vector
(quaternion-inverse (orientation-quaternion body))
append '(0 0 0) (list *gravity*)))))
(/(+((-lylz2qnL)1x)
(/ (+(* (-1z1x) r p) M) ly)
(/ (+(* - Ix1y) pa) N) 12)))))

(defmethod update-velocity ((body quaternion-rigid-body) delta-t)
(setf (velocity body)
(vector-add (velocity body)
(scalar-multiply-vector delta-t (velocity-growth-rate body)))))

(defmethod update-posture ((body quaternion-rigid-body) delta-t)
(setf (posture-rate body) (earth-velocity body))
(setf (posture body)
(append (vector-add (firstn 3 (posture body))
(scalar-multiply-vector delta-t (firstn 3 (posture-rate body))))
(normalize-vector (vector-add (cdddr (posture body))
(scalar-multiply-vector delta-t (cdddr (posture-rate body))))))))

(defmethod transform-node-list ((body quaternion-rigid-body))
(setf (transformed-node-list body)
(mapcar #(lambda (node-location)
(append (rest (vector-add
(position-quaternion body)
(rotate-vector (orientation-quaternion body)
node-location)))

()
(node-list body))))
(defmethod earth-vel ocity ((body quaternion-rigid-body))

(let* ((linear-velocity (append '(0) (firstn 3 (velocity body))))
(rotational-velocity (append '(0) (cdddr (velocity body))))
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(linear-earth-velocity

(rotate-vector (orientation-quaternion body) linear-velocity))

(rotational-earth-vel ocity (scalar-multiply-vector 0.5

(quaternion-product (orientation-quaternion body) rotational-vel ocity))))
(append linear-earth-vel ocity rotational -earth-vel ocity)))

(defmethod print-body-posture ((body quaternion-rigid-body))
(formatt"~2,,F~2,F~2,F~2,F~2,F~2,F~2,F~%"
(first (posture body)) (second (posture body)) (third (posture body))
(fourth (posture body)) (fifth (posture body)) (sixth (posture body))
(seventh (posture body))))

(defmethod print-body-orientation-quaternion ((body quaternion-rigid-body))
(formatt"~2,,,F~2,,F~2,F~2,F~%"
(first (orientation-quaternion body)) (second (orientation-quaternion body))
(third (orientation-quaternion body)) (fourth (orientation-quaternion body))))
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File: partial-derivative.lsp

(defun partial-derivative-gO (quaternion vector)
(let ((q quaternion)
(g-inv (quaternion-inverse quaternion))
(partial-q0'(1 00 0))
(partial-qO-inv '(1 0 0 0))
(v vector))
(vector-add (quaternion-product partial-qO-inv (quaternion-product v q))
(quaternion-product g-inv (quaternion-product v partial-q0)))))

; alternative method
(defun partial-derivative-q0-2 (quaternion vector)
(let (9O (first quaternion))

(g1 (second quaternion))
(g2 (third quaternion))
(g3 (fourth quaternion))
(m1 (first vector))
(m2 (second vector))
(m3 (third vector))
(nl (fourth vector))
(n2 (fifth vector))
(n3 (sixth vector)))

(list (+ (* 290 m1l) (* -2g2m3) (* 293 M2))
(+(*290m2) (* 2q1 m3) (* -29g3 ml))
(+(*290m3) (* -2g1 m2) (* 292 ml))
(+(*290n1) (* -292n3) (* 293 n2))
(+(*290n2) (* 291 n3) (* -29g3nl))
(+(* 290n3) (* -2q1 n2) (* 292 n1)))))

(defun partial-derivative-g1 (quaternion vector)
(let ((q quaternion)
(g-inv (quaternion-inverse quaternion))
(partial-q1'(0100))
(partial-q1-inv '(0-1 0 0))
(v vector))
(vector-add (quaternion-product partial-q1-inv (quaternion-product v q))
(quaternion-product g-inv (quaternion-product v partial-ql)))))

; alternative method
(defun partial-derivative-q1-2 (quaternion vector)
(let (9O (first quaternion))

(g1 (second quaternion))
(g2 (third quaternion))
(g3 (fourth quaternion))
(m1 (first vector))
(m2 (second vector))
(m3 (third vector))
(nl (fourth vector))
(n2 (fifth vector))
(n3 (sixth vector)))
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(list(+ (* 291 ml) (* 292 m2) (* 293 m3))
(+(*290m3) (* -2g1 m2) (* 292 ml))
(+(*-290m2) (* -291 m3) (* 2g3 ml))
(+(*29lnl) (* 292n2) (* 293 n3))
(+(*290n3) (* -291 n2) (* 292 nl))
(+(* -290n2) (* -2 91 n3) (* 203 nl)))))

(defun partial-derivative-g2 (quaternion vector)
(let ((q quaternion)
(g-inv (quaternion-inverse quaternion))
(partial-g2'(0 01 0))
(partial-g2-inv '(0 0 -1 0))
(v vector))
(vector-add (quaternion-product partial-g2-inv (quaternion-product v q))
(quaternion-product g-inv (quaternion-product v partial-g2)))))

; alternative method
(defun partial-derivative-g2-2 (quaternion vector)
(let (9O (first quaternion))

(g1 (second quaternion))
(g2 (third quaternion))
(g3 (fourth quaternion))
(m1 (first vector))
(m2 (second vector))
(m3 (third vector))
(nl (fourth vector))
(n2 (fifth vector))
(n3 (sixth vector)))

(list (+ (* -2q0m3) (* 291l m2) (* -2 92 m1))
(+(*291lml) (* 292 m2) (* 293 m3))
(+(*290ml) (* -292 m3) (* 293 m2))
(+(*-290n3) (* 291 n2) (* -292 nl))
(+(*29lnl) (* 292n2) (* 293 n3))
(+(* 290nl) (* -2g2n3) (* 293 n2)))))

(defun partial-derivative-g3 (quaternion vector)
(let ((q quaternion)
(g-inv (quaternion-inverse quaternion))
(partial-q3'(000 1))
(partial-g3-inv '(00 0 -1))
(v vector))
(vector-add (quaternion-product partial-q3-inv (quaternion-product v q))
(quaternion-product g-inv (quaternion-product v partial-g3)))))

; alternative method
(defun partial-derivative-q3-2 (quaternion vector)
(let (9O (first quaternion))
(g1 (second quaternion))
(g2 (third quaternion))
(g3 (fourth quaternion))
(m1 (first vector))
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(m2 (second vector))
(m3 (third vector))
(nl (fourth vector))
(n2 (fifth vector))
(n3 (sixth vector)))

(list(+ (* 290 m2) (* 291 m3) (* -2g3 ml))
(+(*-290ml1) (* 292m3) (* -293 m2))
(+(*29glml) (* 292 m2) (* 293 m3))
(+(*290n2) (* 291 n3) (* -29g3 nl))
(+(*-290nl) (* 292 n3) (* -293 n2))
(+(* 2g1nl) (* 2g2n2) (* 23 n3)))))
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File: quaternion-algebra.lsp

(defun quaternion-product (Q Q1)
(let ((w (first Q)) (x (second Q)) (y (third Q)) (z (fourth Q))
(wl (first Q1)) (x1 (second Q1)) (y1 (third Q1)) (z1 (fourth Q1)))
(list (- (*wwl) (* xx1) (*yyl) (* zz1))
(+(* xwl) (* wxl) (- (* zyl1)) (* y z1))
(+(*ywl) (* zx1) (* wyl) (- (* x z1)))
(+(* zwl) (- (* y x1)) (* xy1) (* w z1)))))

(defun quaternion-inverse (Q)

(list (first Q) (- (second Q)) (- (third Q)) (- (fourth Q))))

(defun rotate-vector (unit-quaternion vector) ;Vector is quaternion with leading
(let* ((g unit-quaternion) (v vector) ;element zero.
(g-inv (quaternion-inverse q)))
(quaternion-product q (quaternion-product v g-inv))))

File: euler-to-quat.lsp

(defun equivalent-quaternion (azimuth elevation roll)
(quaternion-product (set-quaternion-azimuth azimuth)
(quaternion-product (set-quaternion-elevation el evation)
(set-quaternion-roll roll))))

(defun set-quaternion-azimuth (angle)
(list (cos (/ angle 2)) 00 (sin (/ angle 2))))

(defun set-quaternion-elevation (angle)
(list (cos (/ angle 2)) O (sin (/ angle 2)) 0))

(defun set-quaternion-roll (angle)
(list (cos (/ angle 2)) (sin (/ angle 2)) 0 0))

File: support-functions.Isp
(defun deg-to-rad (angle) (* 0.017453292519943295 angle))
(defun firstn (n list)
(cond ((zerop n) nil)
(t (cons (first list) (firstn (1- n) (rest list))))))
(defun lastn (n list)

(cond ((zerop n) nil)
(t (append (lastn (1- n) (firstn (1- (Iength list)) list)) (last list)))))
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; this function not required for Allegro CL for Windows 95
;(defun square (value)
; (* valuevaue))

File: vector-matrix-arithmetic.lsp

(defun augment (matrix)
(concat-matrix matrix (unit-matrix (length matrix))))

(defun concat-matrix (A B) ;A and B are matrices with equal number of rows.
(cond ((null A) B)
(t (cons (append (car A) (car B)) (concat-matrix (cdr A) (cdr B))))))

(defun cycle-left (matrix) (mapcar 'row-cycle-left matrix))
(defun cycle-up (matrix) (append (cdr matrix) (list (car matrix))))

(defun dot-product (vector-1 vector-2)
(apply '+ (mapcar * vector-1 vector-2)))

(defun first-square (matrix) ;Returns leftmost square matrix from argument.
(do ((size (Iength matrix))
(remainder matrix (rest remainder))
(answer nil (cons (firstn size (first remainder)) answer)))
((null remainder) (reverse answer))))

(defun matrix-inverse (M)
(do ((M1 (max-car-first (augment M))
(cond ((null M1) nil) ;Abort for singular matrix.
(t (max-car-firstn n (cycle-left (cycle-up M1))))))
(n (L- (length M) (1- n))) o
((or (minusp n) (null M1)) (cond ((null M1) nil) (t (first-square M1))))
(setg M1 (cond ((zerop (caar M1)) nil) (t (solve-first-column M1))))))

(defun matrix-multiply (matrix1 matrix2)
(cond ((null (rest matrix1)) (list (pre-multiply (first matrix1) matrix2)))
(t (cons (pre-multiply (first matrix1) matrix2)
(matrix-multiply (rest matrix1) matrix2)))))

(defun max-car-first (L) ;L isalist of lists. Thisfunction finds list with
(cond ((null (cdr L)) L) ;largest car and movesit to head of list of lists.
(t (if (> (abs(caar L)) (abs (caar (max-car-first (cdr L))))) L
(append (max-car-first (cdr L)) (list (car L)))))))

(defun max-car-firstn (n list)
(append (max-car-first (firstn n list)) (nthedr n list)))

(defun normalize-row (row) (scalar-multiply-vector (/ 1.0 (car row)) row))
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(defun normalize-vector (vector)
(scalar-multiply-vector (/ 1 (norm vector)) vector))

(defun norm (vector)
(sart (apply #+ (mapcar 'square vector))))

(defun post-multiply (matrix vector)
(cond ((null (rest matrix)) (list (dot-product (first matrix) vector)))
(t (cons (dot-product (first matrix) vector)
(post-multiply (rest matrix) vector)))))

(defun pre-multiply (vector matrix)
(post-multiply (transpose matrix) vector))

(defun row-cycle-left (row) (append (cdr row) (list (car row))))

(defun scalar-multiply-vector (scalar vector)
(cond ((null vector) nil)
(t (cons (* scalar (first vector))
(scalar-multiply-vector scalar (rest vector))))))

(defun scalar-multiply-matrix (scalar matrix)
(if (not (null matrix))
(cons (scalar-multiply-vector scalar (first matrix))
(scalar-multiply-matrix scalar (rest matrix)))))

(defun solve-first-column (matrix) ;Reducesfirst columnto (10... 0).
(do* ((remaining-row-list matrix (rest remaining-row-list))
(first-row (normalize-row (first matrix)))
(answer (list first-row)
(cons (vector-add (first remaining-row-list)
(scalar-multiply-vector (- (caar remaining-row-list))
first-row))
answer)))
((null (rest remaining-row-list)) (reverse answer))))

(defun transpose (matrix) ;A matrix isalist of row vectors.
(cond ((null (cdr matrix)) (mapcar 'list (car matrix)))
(t (mapcar ‘cons (car matrix) (transpose (cdr matrix))))))

(defun unit-vector (one-column length) ;Column count starts at 1.
(do ((nlength (1- n))
(vector nil (cons (cond ((= one-column n) 1) (t 0)) vector)))
((zerop n) vector)))

(defun unit-matrix (size)
(do ((row-number size (1- row-number))
(I nil (cons (unit-vector row-number size) 1)))
((zerop row-number) 1)))
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(defun vector-add (vector-1 vector-2) (mapcar '+ vector-1 vector-2))

(defun vector-subtract (vector-1 vector-2) (mapcar '- vector-1 vector-2))
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APPENDIX D. SSMULATION MODEL TEST RUNSUSING
GRADIENT DESCENT METHOD

; (test-filter k offset max-iterationserror delta-t)
(test-filter-gradient .7 10-degrees 100 .001 .1)

(-0.0407968594 779338 0.987814785044294 0.149793422179633 -0.0109314855508384)
(-0.0359642597292573 0.989548859847923 0.139308154984263 -0.00963659435083765)
(-0.0333988632303714 0.991038020142009 0.129027401800444 -0.00894919843069551)
(-0.0309292427815184 0.992317459265856 0.119502133414506 -0.00828746562581398)
(-0.028640593210504 0.993416060803329 0.110658722418457 -0.00767422382150284)
(-0.0265169460797078 0.994358901419598 0.10245361366174 -0.00710519428779732)
(-0.0245474425832684 0.995167708988955 0.0948440349768008 -0.00657746741643614)
(-0.0227215761042829 0.995861275313425 0.0877894286954169 -0.00608822796790491)
(-0.0210294198307998 0.996455827433058 0.0812514389056478 -0.00563481606095787)
(-0.0194616178249921 0.996965358929859 0.0751939171141162 -0.00521472477960978)
(-0.0180093776235814 0.997401923540244 0.0695828918480387 -0.00482559819042578)
(-0.0166644560347113 0.997775893916602 0.0643865138599456 -0.00446522753680484)
(-0.0154191404136762 0.998096188622346 0.0595749837789895 -0.00413154622182663)
(-0.014266226825664 0.998370470494064 0.0551204677384272 -0.0038226239569759)
(-0.0131989962170749 0.998605319423938 0.0509970053086573 -0.00353666037726664)
(-0.012211189464283 0.998806382453515 0.0471804130930396 -0.00327197835557808)
(-0.0112969819654345 0.9989785038606 0.0436481865581401 -0.00302701719454714)
(-0.010450958277847 0.999125837688725 0.0403794020401677 -0.0028003258306804 7)
(-0.00966808717378177 0.999251944930007 0.0373546203678796 -0.00259055615056851)

; (test-filter k offset max-iterationserror delta-t)
(test-filter-gradient .8 10-degrees 100 .001 .1)

(-0.0466363024932462 0.988054619864193 0.146345377276698 -0.0124961595910389)
(-0.0336448060715241 0.990016369242001 0.13658090515966 -0.0090150986163666)
(-0.0325765093727223 0.991635692032407 0.124584238621996 -0.00872884937864585)
(-0.0294805106677434 0.992994225320679 0.114153271356649 -0.00789927902587894)
(-0.0270504960876294 0.994134027077225 0.104466602633617 -0.00724815858154155)
(-0.0247418690563448 0.995089762769567 0.0956046694999285 -0.00662956383288417)
(-0.0226411424543706 0.99589074670975 0.0874768239624286 -0.0060666758363666)
(-0.0207132620817334 0.996561 746884026 0.080030255471763 -0.00555010184741466)
(-0.0189480025981257 0.997123653967104 0.0732093910107909 -0.00507710199435059)
(-0.0173314839560756 0.997594062141267 0.066963725303663 -0.0046439571296634)
(-0.0158516748037761 0.99798777087449 0.0612461657160251 -0.00424744346235262)
(-0.0144972763022684 0.998317215928941 0.0560131748731002 -0.00388453347764369)
(-0.01325788503816 0.998592837826888 0.0512245341425605 -0.00355243958931966)
(-0.0121239028963317 0.99882339562866 0.0468431637111396 -0.00324858999018542)
(-0.01108649410346 0.999016233289641 0.0428349239064057 -0.00297061714191452)
(-0.0101375328618482 0.999177505170899 0.0391684192251775 -0.00271634374357618)
(-0.00926955382915876 0.999312366554594 0.0358148057669039 -0.00248376946271993)
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; (test-filter k offset max-iterationserror delta-t)
(test-filter-gradient .9 10-degrees 100 .001 .1)

(-0.0524760351956661 0.988246613548474 0.142888723539894 -0.0140609112526659)
(-0.0294523105119354 0.99045708628517 0.134406258574449 -0.00789172281690377)
(-0.0328759984859507 0.992198765059205 0.11992989262179 -0.00880909724467732)
(-0.0276080858352448 0.993618707837281 0.109109729514156 -0.00739756430412296)
(-0.0257098919446979 0.994781415767648 0.0984960848930969 -0.00688894478407322)
(-0.022999109006359 0.995733538414442 0.0891503444354995 -0.00616259268488926)
(-0.0208838215796623 0.996512849414438 0.0805896639495956 -0.00559580312714617)
(-0.0188515043342893 0.997150421192263 0.0728707295195703 -0.00505124536248464)
(-0.0170522400191014 0.997671831074489 0.0658730719325037 -0.00456913394225991)
(-0.0154104027156919 0.998098107382105 0.0595452533353919 -0.00412920496270799)
(-0.0139299632575643 0.998446516862027 0.0538198603326016 -0.0037325224054596)
(-0.0125894270161801 0.998731222574884 0.0486422866214839 -0.00337332680215604)
(-0.011377821997732 0.998963831698321 0.0439603649476757 -0.00304867821591733)
(-0.0102822040612832 0.999153850020246 0.0397274419986532 -0.00275510827463285)
(-0.00929182516300677 0.999309057873637 0.0359008362893083 -0.00248973704863885)

; (test-filter k offset max-iterationserror delta-t)
(test-filter-gradient 1.0 10-degrees 100 .001 .1)

(-0.0583152058497816 0.988390682282916 0.139423955287233 -0.0156255123139037)
(-0.0233841113470548 0.990849531450444 0.13278226421806 -0.00626575375116281)
(-0.0351423427807272 0.992718898589437 0.114828290272939 -0.00941636236823354)
(-0.0244014962468546 0.994191294500872 0.104620680327731 -0.00653836121345577)
(-0.0252759303508672 0.995363513062414 0.0925566594905315 -0.00677266512546018)
(-0.0208793028447936 0.996299393515018 0.0831881826398405 -0.00559459233578731)
(-0.0194982062305918 0.997046937933426 0.0740940470762447 -0.00522452861334252)
(-0.0170032438817054 0.997643944329682 0.0663075625701921 -0.00455600546681241)
(-0.0153929960071091 0.9981205821668 0.0591721834286807 -0.00412454084920038)
(-0.0136473996816812 0.9985010080441 0.0528782862760464 -0.00365680972349124)
(-0.0122381790122951 0.998804566699065 0.0472113471120067 -0.00327921018317201)
(-0.0109045963485031 0.999046739936555 0.0421682799130494 -0.00292187778536873)
(-0.00974982771925494 0.999239909185641 0.0376526202393971 -0.00261245846371697)
(-0.00870022237272814 0.999393970093261 0.0336238620118091 -0.00233121755874369)

; (test-filter k offset max-iterationserror delta-t)
(test-filter-gradient 1.1 10-degrees 100 .001 .1)

(-0.064152962096264 0.988486763117717 0.135951570888611 -0.0171897343857584)
(-0.0154383501349454 0.991160049344576 0.131705359403706 -0.00413669345112755)
(-0.0402208972792998 0.993164779155011 0.109040605997087 -0.0107771569448435)
(-0.0184433682027599 0.994695655034773 0.10107410049485 -0.00494188561563934)
(-0.0272749736590781 0.99587624841727 0.0862157891375802 -0.00730830716553013)
(-0.0170203420463652 0.996791380025529 0.078079790666324 -0.00456058690622508)
(-0.0195615695694212 0.997502548657585 0.0676648876773959 -0.00524150676881165)
(-0.0143499320307392 0.998055873164189 0.0605290761776836 -0.00384505269907804)
(-0.0145360733162948 0.99848660371862 0.0528964487868246 -0.00389492910622076)
(-0.0116238695093196 0.998821956912581 0.0470093955888315 -0.00311460644794699)
(-0.011028608011913 0.99908305378144 0.0412636498263716 -0.00295510661043149)
(-0.00923422502702625 0.999286324444643 0.0365437914021331 -0.00247430313871896)



; (test-filter k offset max-iterationserror delta-t)
(test-filter-gradient 1.2 10-degrees 100 .001 .1

(-0.0699884515727754 0.988534814043835 0.132472072408145 -0.0187533490784299)
(-0.00561498066974421 0.99134280914623 0.131170282979858 -0.00150452953597429)
(-0.0489546216571366 0.993459214850227 0.102323841510331 -0.0131173513388009)
(-0.00780925307707703 0.995055303108517 0.0989928322489017 -0.00209248305549306)
(-0.0344797715312819 0.996259806578048 0.0786904519560616 -0.00923882693701665)
(-0.00815760284656923 0.99716942915779 0.0747114800169442 -0.00218582309491202)
(-0.024468423836436 0.997856825885085 0.0603329617468896 -0.00655629440703547)
(-0.00759078677198126 0.998376615370229 0.0564125598165019 -0.0020339451854692)
(-0.0174963668517397 0.998769890812519 0.0461584631606423 -0.00468813736840233)
(-0.00663835602497839 0.999067597782413 0.0426228033683549 -0.00177874213596324)
(-0.0126030030050699 0.999293061991474 0.0352581434831337 -0.0033769644774155)
(-0.00558803870908517 0.999463881528935 0.0322254 77558732 -0.00149731045937329)
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